d9e5a92d

Нормальные вероятности

Теперь мы знаем, как преобразовывать наши необработанные данные в стандартные единицы и как построить кривую N'(Z) (т.е. как найти высоту кривой, или координату Y, для данной стандартной единицы), а также N'(X) (из уравнения (3.14), т.е. саму кривую без первоначального преобразования в стандартные единицы). Для практического использования нормального распределения вероятности нам надо знать вероятность определенного результата. Это определяется не высотой кривой, а площадью под кривой. Эта площадь задается интегралом функции N'(Z), которую мы до настоящего момента изучали. Теперь мы займемся N(Z), интегралом N'(Z), чтобы найти площадь под кривой (т.е. вероятности).



и ABSQ = функция абсолютного значения;
ЕХР() = экспоненциальная функция.
При расчете вероятности мы всегда будем преобразовывать данные в стандартные единицы. То есть вместо функции N(X) мы будем использовать функцию
N(Z), где:

(3.16) Z=(X-U)/S,


где U = среднее значение данных;
S = стандартное отклонение данных;
Х = наблюдаемая точка данных.
Теперь обратимся к уравнению (3.21). Допустим, нам надо знать, какова вероятность события, не превышающего +2 стандартных единицы (Z = +2).

Y= 1/(1 +2316419*ABS(+2)) =1/1,4632838 =0,68339443311 (3.15a) N'(Z) = 0,398942 * ЕХР(-(+2^2/2))

= 0,398942 *ЕХР (-2)=0,398942*0,1353353=0,05399093525


Заметьте, мы можем найти высоту кривой при +2 стандартных единицах.


Подставляя полученные значения вместо Y и N'(Z) в уравнение (3.21), мы можем получить вероятность события, не превышающего +2 стандартных единицы:



N(Z) = 1 - N'(Z) * ((1,330274429 * Y^ 5) -
- (1,821255978 * Y^4) + (1,781477937 * Y^ 3) -
- (0,356563782 * Y ^ 2) + (0,31938153 * Y))
= 1-0,05399093525* ((1,330274429* 0,68339443311^5)-
- (1,821255978 * 0,68339443311 ^ 4 + 1,781477937 * 0,68339443311^ 3) - -
(0,356563782 * 0,68339443311 ^2) + 0,31938153 * 0,68339443311))
= 1 - 0,05399093525 * (1,330274429 * 0,1490587) -
- (1,821255978 * 0,2181151 + (1,781477937 * 0,3191643)-
- (0,356563782 * 0,467028 + 0,31938153 - 0,68339443311))
1- 0,05399093525 * (0,198288977 - 0,3972434298 + 0,5685841587 - 0,16652527+0,2182635596)
= 1 - 0,05399093525 * 0,4213679955 = 1 - 0,02275005216= 0,9772499478

Таким образом, можно ожидать, что 97,72% результатов в нормально распределенном случайном процессе не попадают за +2 стандартные единицы. Это изображено на рисунке 3-8.
Чтобы узнать, какова вероятность события, равного или превышающего заданное число стандартных единиц (в нашем случае +2), надо просто изменить уравнение (3.21) и не использовать условие «Если Z < 0, то N(Z) = 1 - N(Z)».
Поэтому вторая с конца строка в последнем расчете изменится с = 1 - 0,02275005216 на 0,02275005216
Таким образом, с вероятностью 2,275% событие в нормально распределенном случайном процессе будет равно или превышать +2 стандартные единицы. Это показано на рисунке 3-9.



Рисунок 3-8 Уравнение (3.21) для вероятности Z=+2





Рисунок 3-9 Устранение оговорки «Если Z < 0, то N(Z) = 1 - N(Z)» в уравнении (3.21)

До сих пор мы рассматривали площади под кривой 1-хвостых распределений вероятности. То есть до настоящего момента мы отвечали на вопрос: «Какова вероятность события, которое меньше (больше) заданного количества стандартных единиц от среднего?» Предположим, теперь нам надо ответить на такой вопрос:
«Какова вероятность события, которое находится в интервале между определенным количеством стандартных единиц от среднего?» Другими словами, мы хотим знать, как подсчитать 2-хвостые вероятности. Посмотрим на рисунок 3-10. Он представляет вероятности события в интервале двух стандартных единиц от среднего. В отличие от рисунка 3-8 этот расчет вероятности не включает крайнюю область левого хвоста, область меньше -2 стандартных единиц. Для расчета вероятности нахождения в диапазоне Z стандартных единиц от среднего вы должны сначала рассчитать 1-хвостую вероятность абсолютного значения Z с помощью уравнения (3.21), а затем полученное значение подставить в уравнение (3.22), которое дает 2-хвостые вероятности (то есть вероятности нахождения в диапазоне ABS(Z) стандартных единиц от среднего):

(3.22) 2-хвостая вероятность =1-((1- N(ABS(Z))) * 2)


Если мы рассматриваем вероятности наступления события в диапазоне 2 стандартных отклонений (Z = 2), то из уравнения (3.21) найдем, что N(2) = 0,9772499478 и можно использовать полученное значение для уравнения (3.22):

2-хвостая вероятность =1-((1- 0,9772499478) * 2) =1-(0,02275005216*2) = 1—0,04550010432 = 0,9544998957


Таким образом, из этого уравнения следует, что при нормально распределенном случайном процессе вероятность события, попадающего в интервал 2 стандартных единиц от среднего, составляет примерно 95,45%.
Как и в случае с уравнением (3.21), можно убрать первую единицу в уравнении (3.22), чтобы получить (1 - N(ABS(Z))) * 2, что представляет вероятности события вне ABS(Z) стандартных единиц от среднего.



Это отображено на рисунке 3-11. Для нашего примера, где Z = 2, вероятность события при нормально распределенном случайном процессе вне 2 стандартных единиц составляет:

2-хвостая вероятность (вне) = (1 - 0,9772499478) * 2 =0,02275005216*2 =0,04550010432


Наконец, мы рассмотрим случай, когда надо найти вероятности (площадь под кривой N'(Z)) для двух различных значений Z.



Рисунок 3-10 2-хвостая вероятность события между +2 и -2 сигма



Рисунок 3-11 2-хвостая вероятность события, находящегося вне 2 сигма


Допустим, нам надо найти площадь под кривой N'(Z) между -1 стандартной единицей и +2 стандартными единицами. Есть два способа расчета. Мы можем рассчитать вероятность, не превышающую +2 стандартные единицы, при помощи уравнения (3.21) и вычесть вероятность, не превышающую -1 стандартную единицу (см. рисунок 3-12). Это даст нам: 0,9772499478 - 0,1586552595 = 0,8185946883


Рисунок 3-12 Площадь между -1 и +2 стандартными единицами

Другой способ: из единицы, представляющей всю площадь под кривой, надо вычесть вероятность, не превышающую -1 стандартную единицу, и вероятность, превышающую 2 стандартные единицы:

= 1 - (0,022750052 + 0,1586552595) = 1 -0,1814053117 =0,8185946883


С помощью рассмотренных в этой главе математических подходов вы сможете рассчитывать любые вероятности событий для случайных процессов, имеющих нормальное распределение.


Содержание раздела