d9e5a92d

Радуга, венцы, гало

Наряду с наиболее распространенной линейной молнией иногда встречаются ракетообразная, четочная и шаровая молнии. Ракетообразная молния наблюдается очень редко.

Она длится 1...1,5 сек и представляет собой медленно развивающийся между облаками разряд. К весьма редким видам молнии следует отнести и четочную. Она имеет общую длительность 0,5 сек и представляется глазу на фоне облаков в виде светящихся четок диаметром около 7 см.

Весьма своеобразным видом молнии является и шаровая молния. В большинстве случаев шаровая молния представляет собой сферическое (реже грушевидное) образование диаметром у земной поверхности 10...20 см, а на высоте облаков до 10 м. Возникает шаровая молния не обязательно вблизи канала линейной молнии, но при всех обстоятельствах появление шаровой молнии связано с прохождением грозы над местностью.
Существует две разновидности шаровых молний - подвижные и неподвижные. Подвижные шаровые молнии плавают в воздухе со скоростью около 2 м/сек, иногда со скоростью воздушных течений, неподвижные же закрепляются на остриях молниеотводов, на острых краях металлических крыш, в верхней части заводских труб. Подвижные молнии светятся красноватым светом, в то время как неподвижные испускают ослепительно белый свет. Подвижные молнии могут оседать и становиться неподвижными, а неподвижные, наоборот, срываться с мест закрепления и становиться подвижными.

Большая шаровая молния может иногда распасться на несколько светящихся шаров меньшего размера. О температуре шаровой молнии можно судить по расплавлению и испарению металлов, на которые она садится, или по сильному нагреванию воды, если молния опускается в водоем. Длительность существования шаровой молнии изменяется в пределах от нескольких секунд до полминуты.

Шаровая молния сопровождается свистом, завыванием, жужжанием, шипением и потрескиванием, ее исчезновение в большинстве случаев происходит с взрывом. Мощность взрыва достаточна, чтобы разрушить большую печную трубу, разбить на кусочки кирпичи здания.

Иногда шаровая молния исчезает бесшумно. Обычно после ее исчезновения в помещении остается некоторое время остро пахнущая дымка, голубая в отраженном свете и коричневая в проходящем.
Вопрос об образовании шаровой молнии экспериментально еще не изучен. Согласно одной из наиболее рациональных гипотез, шаровая молния может возникнуть за счет осуществляющейся иногда фокусировки ядерно-активных космических частиц в мощном электрическом поле грозовых облаков.

Возникающая при этом реакция дробления ядер атмосферного газа ксенона может дать энергию, достаточную для образования шаровой молнии. С этой точки зрения вероятность образования шаровых молний должна иметь связь с мощными вспышками на Солнце, обусловливающими увеличение интенсивности космического излучения у земной поверхности.
При разряде молнии на всем протяжении ее извилистого пути происходит очень быстрое нагревание столба воздуха до нескольких десятков тысяч градусов. И основной канал молнии, и все его многочисленные разветвления становятся источниками ударных волн.

Резкий фронт ударной волны по мере удаления от места разряда все более сглаживается, и на некотором расстоянии от источника ударная волна превращается в акустическую (звуковую) волну небольшой амплитуды. В ходе этого Превращения происходит постепенное уменьшение скорости распространения ударной волны вплоть до скорости звука в конечном итоге. Наибольшая энергия грома приходится на инфразвуковые частоты в диапазоне 0,25...2 Гц и среди них чаще всего на частоту 0,5 Гц. В звуковом участке акустического спектра в диапазоне частот 125...250 Гц находится вторичный максимум, значительно уступающий по энергии инфразвуковому.

Инфразвуковой максимум энергии грома соответствует полному времени развития разряда молнии (общая его продолжительность составляет в среднем 1,55 сек.). Слышимая компонента грома представляет собой акустический эффект от последовательности разрядов, составляющих многократный разряд молнии.
Звуки, следующие после главного удара грома, создают впечатление удаляющегося от места наблюдения и постепенно затухающего рокочущего шума; Это - раскаты грома. Они наблюдаются в местности с любым рельефом и образуются ветвящимся и удаляющимся от места наблюдения разрядом молнии.

Длительность раскатов грома определяется особенностями развития молнии. В среднем раскаты длятся 24 секунды, крайние отклонения от среднего значения составляют 4 и 100 сек. Характер звучания грома является существенной особенностью уже начавшейся грозы. Народные приметы утверждают, что длительные раскаты грома являются признаком приближения протяженного массива грозовых облаков.



Глухой, продолжительный и умножающийся со временем гром с медленными раскатами характерен для длительной грозы, в то время как короткие и резкие удары с возрастающими по времени промежутками между ними характеризуют кратковременную грозу.
Средняя дальность слышимости грома для летних гроз на континенте составляет 10... 15 км. Разница во времени между вспышками молнии и восприятием грома может достигать 90 сек.

Гром от близкого разряда молнии производит такое же действие на слух, как выстрел зенитного орудия в 3 м от наблюдателя.
С давних времен в процессе познания грозы человек стремился подчинить ее своей власти. Об этом говорит, например, легенда о Прометее. Овладение грозами было предметом мечтаний ученых и философов средневековья. В последние годы были сделаны попытки засева грозовых облаков кристаллами таких веществ, как йодистое серебро, йодистый свинец и твердая углекислота.

Можно полагать, что каждое из этих веществ должно способствовать затуханию и даже полному прекращению грозового процесса за счет резкого усиления конденсации водяного пара. Опыты в этом направлении только начаты. и имеющийся экспериментальный материал еще недостаточен для окончательных выводов.
В 1928...1933 годы на горе Дженеросо в Швейцарии на высоте 80 м над земной поверхностью подвешивалась металлическая решетка. Во время гроз эта решетка собирала достаточный заряд для поддержания в течение 0,01 сек электрической дуги длиной в 4,5 м, что соответствовало силе тока в несколько десятков тысяч ампер и разности потенциалов порядка 1 млн. вольт.

Вначале предполагалось получаемое на этой установке напряжение использовать для ускорения заряженных частиц в ускорителях. Однако от этой мысли пришлось отказаться ввиду сильной изменчивости электрического состояния грозовых облаков и невозможности пока его регулировать.

Попытки использовать протекающий во время гроз в поднятых высоко над земной поверхностью антеннах электрический ток для питания ламп накаливания также пока не дали экономически выгодного эффекта.

Радуга, венцы, гало

В религиозных представлениях народов древности радуге приписывалась роль моста между землей и небом. В греко-римской мифологии известна даже особая богиня радуги - Ирида. Греческие ученые Анаксимен и Анаксагор считали, что радуга возникает за счет отражения Солнца в темном облаке. Аристотель изложил представления о радуге в специальном разделе своей Метеорологии.

Он считал, что радуга возникает благодаря отражению света, но не просто от всего облака, а от его капель.
В 1637 году знаменитый французский философ и ученый Декарт дал математическую теорию радуги, основанную на преломлении света. Впоследствии эта теория была дополнена Ньютоном на основании его опытов по разложению света на цвета с помощью призмы. Дополненная Ньютоном теория Декарта не могла объяснить одновременного существования нескольких радуг, различной их ширины, обязательного отсутствия в цветных полосах некоторых цветов, влияния размеров капель облака на внешний вид явления. Точную теорию радуги на основе представлений о дифракции* света дал в 1836 году английский астроном Д. Эри.

Рассматривая пелену дождя как пространственную структуру, обеспечивающую возникновение дифракции, Эри объяснил все особенности радуги. Его теория полностью сохранила свое значение и для нашего времени.
* Дифракция - отклонение световых волн в область геометрической тени при прохождении их через узкие отверстия или вблизи небольших препятствий (размеры отверстий и препятствий должны быть сравнимы с длиной волны).
Радуга - это оптическое явление, возникающее в атмосфере и имеющее вид разноцветной дуги на небесном своде. Наблюдается она в тех случаях, когда солнечные лучи освещают завесу дождя, расположенную на противоположной Солнцу стороне неба.

Центр дуги радуги находится в направлении прямой, проходящей через солнечный диск (хотя бы и скрытый от наблюдения тучами) и глаз наблюдателя, т.е. в точке, противоположной Солнцу. Дуга радуги представляет собой часть круга, описанного вокруг этой точки радиусом в 4230' (в угловом измерении).
Наблюдатель иногда может одновременно увидеть несколько радуг - главную, побочную и вторичные. Главная радуга представляет собой цветную дугу на каплях удаляющейся дождевой пелены и возникает она всегда со стороны неба, противоположной Солнцу. При Солнце на горизонте высота верхнего края главной радуги составляет в угловой мере 4230'.

При подъеме Солнца над горизонтом видимая часть радуги понижается. Когда Солнце достигает высоты 4230', для наблюдателя на земной поверхности радуга будет не видна, однако если в момент ее исчезновения подняться на башню или мачту корабля, то радугу можно увидеть снова.
При наблюдении с высокой горы или с самолета радуга может иметь вид полной окружности. Еще Аристотель математически доказал, что Солнце, местонахождение наблюдателя и центр радуги находятся на одной прямой. Поэтому чем выше над горизонтом поднимается Солнце, тем ниже опускается центр радуги.

В пересеченной местности радугу можно наблюдать и на фоне ландшафта.
Интересно расположение цветов в радуге. Оно всегда постоянно. Красный цвет главной радуги расположен на ее верхнем крае, фиолетовый - на нижнем.

Между этими крайними цветами следуют друг за другом остальные цвета в такой же последовательности, как в солнечном спектре. В принципе в радуге никогда не бывают представлены все цвета спектра. Чаще всего в ней отсутствуют или слабо выражены синий, темно-синий и насыщенный чисто красный цвета. С увеличением размеров капель дождя происходит сужение цветных полос радуги, сами же цвета становятся более насыщенными.

Преобладание в явлении зеленых тонов обычно указывает на последующий переход к хорошей погоде. Общая картина цветов радуги имеет размытый характер, так как образуется она протяженным источником света.
Над главной радугой располагается побочная с чередованием цветов, обратным главной. Угловая высота верхнего края побочной радуги составляет 5332'. Кроме того, со стороны фиолетового конца главной радуги иногда можно наблюдать радуги вторичные, преимущественной их окраской является зеленая и розовая. В редких случаях вторичные радуги отмечаются и со стороны фиолетового края побочной радуги.

Вторичные радуги более широки в высоких слоях дождевой пелены, где капли дождя имеют меньшие размеры.
Если приписать каждой вновь появляющейся радуге свой номер, то цифрами 1 и 2 будут обозначаться главная и побочная радуги, остальные номера будут относиться к радугам вторичным. 1, 2, 5 и 6-я радуги располагаются на стороне неба, диаметрально противоположной Солнцу, 3, 4, 7 и 8-я - вблизи Солнца.

Третья радуга, например, наблюдается в пелене дождя выше Солнца, четвертая - на этой же стороне, но ниже Солнца, пятая - со стороны противосолнца над побочной радугой. Радуги высоких порядков постепенно все более теряют в яркости и поэтому в естественных условиях наблюдаются редко.

При искусственном воспроизведении явления в лаборатории удавалось получать до 19 радуг. Над водоемом могут наблюдаться дополнительные радуги, расположенные друг относительно друга неконцентрично. Для одной из них источником света является Солнце, для другой - его отражение от водной поверхности.

В этих условиях могут встречаться и радуги, расположенные вверх ногами.
Ночью при лунном освещении и туманной погоде в горах и на берегах морей можно наблюдать белую радугу. Такой тип радуги может возникать и при воздействии солнечного света на туман. Она имеет вид блестящей белой дуги, с внешней стороны окрашенной в желтоватый и оранжево-красный цвета, а изнутри - в сине-фиолетовый.

В некоторых случаях белая радуга сопровождается побочной и вторичными радугами. У побочной белой радуги в сравнении с главной обратное чередование цветов.
Если радуга образована действием лунного света на капли дождя, то она выглядит белой. В некоторых случаях она кажется белой только вследствие малой интенсивности света.

Такого типа радуга при укрупнении капель дождя может перейти в цветную. Наоборот, цветная радуга может потерять окраску, если дождь превратится в мелкокапельный туман.

Как правило, при наличии мелких капель окраска радуги выражена слабо.
Радуга наблюдается не только на пелене дождя. В меньших масштабах ее можно увидеть на каплях воды у водопадов, фонтанов и в морском прибое.

При этом в качестве источника света могут служить не только Солнце и Луна, но и прожектор.
Кроме радуги, в атмосфере наблюдается еще несколько Дифракционных явлений. Среди них чаще можно видеть венцы. Венцами называются цветные кольца, непосредственно прилегающие к небесным светилам (Солнцу, Луне, планете).

В туманную погоду венцы’ наблюдаются и на искусственных источниках света у земной поверхности (уличные фонари, фары автомобилей).
Непосредственно у светил или у наземных источников света располагается цветной круг или ореол, в котором цвета меняются от голубовато-белого с внутренней стороны через желтоватый до красного со стороны внешней. Размеры красного края ореола обычно составляют несколько градусов, в верхнем пределе до 5, но встречаются ореолы и несколько меньше 1. Не всегда в ореоле представлены все упомянутые выше цвета.

Иногда он может состоять из беловатого сияния с примыкающей к нему извне красной каймой. Встречаются и такие ореолы, в которых отсутствует желтоватый цвет. За верхним краем ореола обычно следуют менее яркие цветные кольца общим числом не более трех с таким же распределением цветов, как в ореоле.

Научное объяснение явления венцов было дано немецким ученым И. Фраунгофером.
Венцы наблюдаются в тех случаях, когда источник света перекрывается тонким слоем водяного или ледяного облака. Лучше они образуются на облаке, состоящем из частиц примерно одинакового размера.

В водяных облаках с каплями разнообразных размеров венцы не имеют полного развития и обычно сводятся к одному ореолу.
С увеличением размеров капель венцы уменьшаются в размерах и при достаточно больших каплях исчезают совсем. Такая эволюция венцов указывает на ухудшение погоды. На ледяных облаках с большим количеством примерно одинаковых по размерам кристаллов венцы имеют чистые насыщенные цвета и достигают наиболее полного развития.

Красивую картину венцов дают перистые облака. На облаках нижнего яруса венцы чаще состоят из одного ореола, причем, если плотность капель в различных направлениях неодинакова, они могут иметь и несимметричный вид.
Существует группа явлений, которые наблюдаются благодаря преломлению и отражению света ледяными кристаллами перистых облаков. Это гало (от греческого галос - круг), горизонтальный круг, касательные дуги и ложные солнца и луны. Наиболее часто среди них наблюдается гало в 22 - так называется описанный около светила светящийся круг радиусом в угловой мере в 22, окрашенный в красный цвет и резко очерченный с внутренней стороны, и имеющий фиолетовую окраску, постепенно сливающуюся с синевой неба со стороны внешней.

Красная окраска изнутри и фиолетовая снаружи объясняется различным преломлением световых лучей в кристаллах. При слабом лунном свете цвета гало не воспринимаются глазом, и тогда оно имеет вид белого круга. Гало в 46 - описанный вокруг Солнца или Луны светящийся круг радиусом в 46.

Распределение в нем цветов такое же, как в предыдущем гало, но наблюдается оно реже и не всегда имеет полное развитие. Горизонтальный круг, который проходит через светило параллельно горизонту, представляет собой белый светящийся круг, иногда часть круга. Касательные дуги, обращенные выпуклостью к светилу дуги у гало в 22 и 46, окрашены в красный цвет со стороны светила и в фиолетовый - с противоположной стороны.

В точках пересечения гало и горизонтального круга возникают яркие цветные или белые пятна. Это ложные солнца или луны.

Они имеют красную окраску со стороны, обращенной к светилу. Иногда ложные солнца или луны наблюдаются самостоятельно, без гало, нередко за ними в сторону от светила тянутся световые хвосты.
Кристаллы перистых облаков могут быть ориентированы в атмосфере беспорядочно, горизонтально и вертикально; Гало в 22 образуется за счет преломления света в ледяных призмах с преломляющим углом в 60 при их беспорядочной ориентации, а ложные солнца и луны - на таких же призмах, но с вертикальной ориентацией. Касательные дуги возникают на кристаллах с преломляющим углом также в 60, но преломляющие ребра этих кристаллов располагаются в атмосфере горизонтально.

Все явления, связанные с гало в 46, образуются как и в случае гало в 22, но преломляющий угол кристаллов при этом составляет 90.
Развитие горизонтального круга происходит за счет отражения света от кристаллов, ориентированных вертикально. Именно поэтому горизонтальный круг имеет белую окраску.

Первая теория гало была дана французским физиком Э. Мариоттом.
Как правило, гало наблюдается перед приходом на данную территорию циклона или при прохождении циклона в некотором отдалении от места наблюдения. Перистые облака, на которых оно возникает, имеют вертикальную протяженность около 1,6 км.
Интересно отметить, что такое красивое атмосферное явление, как гало, иногда сопутствовало некоторым событиям истории. В Слове о полку Игореве рассказывается, что перед наступлением половцев и пленением Игоря четыре солнца засияли над русской землей.

Воины восприняли это как знак надвигающейся большой беды.
В 1551 г. после длительной осады войсками императора Карла V немецкого города Магдебурга в небе над городом вдруг появилось гало с ложными солнцами. Среди осаждавших это вызвало переполох. Они восприняли гало как небесное знамение.

Решив, что в защиту осажденных выступил сам бог, Карл V приказал снять осаду города. История сохранила немало и других примеров подобного рода.

Все они - убедительное свидетельство того, что невежество делает человека рабом природы, заставляет его преклоняться перед ее слепыми силами.

Радиоактивность вод суши и океана

Согласно приблизительным оценкам возраст Земли составляет около 6 млрд. лет. Около 2 млрд. лет тому назад на Земле зародилась жизнь.

Существует мнение, что задержка в развитии жизни на Земле могла произойти из-за высокого уровня радиации, который господствовал на планете вскоре после ее возникновения, вследствие чего живые организмы появились лишь после значительного уменьшения радиоактивности земной коры и атмосферы.
Воды Мирового океана содержат миллиарды тонн калия, рубидия, урана, тория и радия. Естественная радиоактивность вод суши и океана в основном обусловлена радиоактивным изотопом калия (К40). Количество радия в поверхностных водах океана составляет около 0,4-1010%. В глубоководных осадках центральных частей океанов радия значительно больше, чем должно быть по условиям равновесия с имеющимся в осадках ураном.

Воды природных источников содержат урана от 5-10-7 до3-10-5 г/л. В северных реках урана несколько меньше, в южных - больше.

В бессточных водоемах засушливых районов концентрация урана может возрасти до 4- 10-2 г/л. Радиоактивность речной воды оценивается величиной порядка 1012 Кюри/л, озерной 10-11 Кюри/л и морской 10-10 Кюри/л, в то время как радиоактивность атмосферного воздуха составляет примерно 10-16 Кюри/см3 и радиоактивность атмосферных осадков у поверхности Земли около 2-10-11 Кюри/г (сохраняется радиоактивность осадков в течение нескольких часов, причем снег более радиоактивен, чем дождь). Выпадение осадков способствует очищению атмосферы от радиоактивных загрязнений.

Наибольшее количество радиоактивных веществ содержат туманы и морось.
В высоких слоях атмосферы, при бомбардировке ядер водорода космическими лучами, образуется тяжелый изотоп водорода - радиоактивный тритий, который затем входит в состав сверхтяжелой воды Т2О и вместе с осадками попадает на земную поверхность. Общее количество трития в водах Мирового океана составляет около 800 г, период его полураспада 12,2 года. Концентрация трития уменьшается с приближением к экватору. Когда в водах одного из подземных источников провинции Шампань (Франция) тритий не был обнаружен, ученые пришли к выводу, что в этот источник не попадала влага из атмосферы.

В океанических водах трития меньше, чем в водах суши. Это обстоятельство использовано для решения вопроса о том, какая часть атмосферных осадков образовалась за счет испарения воды с поверхности океана и какая - за счет испарения вод суши.

Разновидности тритиевой воды HTO, DTO и Т2О применяются в качестве радиоактивных индикаторов влагонепроницаемости вещества.
В человеческом организме имеется около 3 10-3 г радиоактивного калия и 6 10-9 г радия. За счет этих веществ в теле человека ежесекундно происходит 6 тысяч бета-распадов и 220 альфа-распадов.

Кроме того, в результате воздействия космических лучей в организме человека возникают искусственные радиоэлементы. Только благодаря радиоактивному углероду С14 происходит 2 500 бета-распадов в секунду дополнительно.

В общем итоге в теле человека ежесекундно происходит 10 000 актов распада. Поскольку окружающий нас воздух, вода и горные породы радиоактивны, человеческий организм по уровню своей радиоактивности приспособился к радиационному фону окружающей среды.

Геотермальные воды

При перемещении в направлении к центру Земли температура в верхних слоях земной коры возрастает в среднем на 1C на каждые 100 м (геотермическая ступень). В более древних слоях геотермическая ступень меньше средней величины, в молодых изверженных породах она превышает среднее значение.

Если бы геотермальная ступень определяла изменение температуры на всех глубинах, то в центре Земли температура была бы 200 000C. Однако анализ наблюдений над лавой при вулканических извержениях и сейсмические исследования приводят к выводу, что в центре Земли температура должна быть всего лишь около 2000...5000C. Следовательно, геотермическая ступень с глубиной должна уменьшаться.

Разогрев земной коры происходит за счет радиоактивного распада радия, урана, тория и калия, которые распределены в ней неравномерно: граниты содержат больше радиоактивных веществ, чем расположенные ниже базальты. Слой повышенной радиоактивности земной коры имеет толщину в несколько километров.

Поскольку с глубиной возрастает теплопроводность и уменьшается геотермическая ступень, тепло накапливается и разогревает внутренние слои планеты.
В Симплонском туннеле уже на глубине 2 135 м за счет повышенного содержания радиоактивных веществ горные породы имеют температуру 53C. В золотых рудниках Колара на юге Индии на глубине 3 км температура пород достигает 65C.

Имеющаяся в земной коре вода разогревается горными породами и может переносить тепло в более высокие горизонты. Например, в долине Паужетки (Камчатка) вода с температурой 200C подходит к поверхности земли на расстояние в 100...300 м. На глубине более 13... 14 км вода переходит в пар.

При температурах и давлениях, господствующих ниже 60 км, молекулы воды существовать уже не могут.
Геотермальными называются выделяющиеся из недр Земли воды с температурой выше 20C. В большинстве случаев они имеют температуру от 40 до 100C.

Наибольшая температура поступающей к земной поверхности геотермальной воды может достигать 300C, а температура пара доходить до 600C.
Геотермальные воды с температурой 20...40C используют для лечебных целей, а с температурой 40...60C для выращивания растений в парниках.Для технологических целей и отопления наиболее пригодны воды с температурой 40...100C. Получение электрической энергии осуществляется с помощью геотермальных вод и пара наиболее высоких параметров. В ряде мест на геотермальной энергии работают промышленные холодильные установки.

Извлекаемые из минеральных вод соли находят широкое применение в химической промышленности. Как моющее средство геотермальные воды употребляются на шерстомойках и камвольных предприятиях.
Несмотря на то, что каждый квадратный сантиметр земной поверхности в течение года получает от Солнца 68 килокалорий тепла, в то время как из недр Земли к ней за то же время поступает лишь 40калорий, полная энергия геотермальных вод земной коры во много раз превышает энергию всех видов ископаемого топлива.
В нашей стране на Камчатке построены и работают две геотермальные электростанции - на реке Паужетке и на Паратунских источниках. Мощность Паужетской электростанции составляет 5 тыс. киловатт ив дальнейшем может быть доведена до 70 тыс. киловатт. В недалеком будущем войдут в строй геотермальные электростанции в районе Махачкалы и около Южно-Курильска. Кроме нашей страны, геотермальные электростанции имеются в Италии, Новой Зеландии, Мексике, Конго, США (Калифорния), Японии и Исландии.

Общая мощность всех геотермальных электростанций мира превышает 700 тыс. киловатт.
Поскольку для получения электрической энергии на геотермальных электростанциях используется даровое тепло Земли, они вырабатывают более дешевую энергию, чем энергия тепловых, атомных и гидроэлектростанций. Если принять при этом во внимание и большие
запасы геотермальной энергии в земной коре, можно утверждать, что геотермальной энергетике принадлежит большое будущее.



Содержание раздела