d9e5a92d

Варианты оценки обобщенных функциональных подсистем и альтернатив


5. На основании предшествующей информации производится иерархический синтез по алгоритму, предназначенному для осуществления свертки в иерархиях с несколькими ветвями, имеющих различное число альтернатив под критериями. В результате получаем нормированный вектор приоритетов всех альтернатив относительно фокуса иерархии.
6. Полученные значения векторов приоритетов альтернатив заносятся в соответствующие ячейки первоначальной морфологической матрицы, на которой осуществляются комбинаторный синтез систем и вычисление для них значений целевых функций аддитивным или мультипликативным методом.
Рассмотрим пример, иллюстрирующий влияние на результаты комбинаторного синтеза различной степени значимости обобщенных функциональных подсистем.
Зададим морфологическую матрицу размерностью 3х3 (рис. 5.11 а), в которой представлены три обобщенные функциональные подсистемы (ОФПСi; = ). Каждая ОФПСi имеет три альтернативы Aij(i =j = ).

Иерархическое представление матрицы приведено на рис. 5.11б.

Для упрощения примера оценка обобщенных функциональных подсистем и альтернатив производится по одному критерию, характеризующему их эффективность.
При попарном сравнении обобщенных функциональных подсистем эксперт отвечает на вопрос, какая подсистема из двух сравниваемых дает больший вклад в новизну целостной системы. При попарном сравнении альтернатив, принадлежащих определенной подсистеме, эксперт отдает то или иное предпочтение, отвечая на вопрос, какая альтернатива из двух сравниваемых обладает большей эффективностью. Степень предпочтения устанавливается по девятибалльной шкале.

В табл. 5.14 приведено четыре варианта векторов приоритетов обобщенных функциональных подсистем и альтернатив, принадлежащих последним. Вариант 1 можно характеризовать тем, что все подсистемы и альтернативы, конкретизирующие соответствующую подсистему, равнопредпочтительны.

В варианте 2 равнопредпочтительны между собой только обобщенные функциональные подсистемы. В варианте 3 равнопредпочтительны все альтернативы, принадлежащие соответствующим обобщенным подсистемам, а последние отличаются друг от друга вкладом, вносимым в новизну системы в целом.

В варианте 4 отсутствуют равнопредпочтительные элементы. Результирующие векторы приоритетов альтернатив относительно фокуса иерархии (см. рис.

5.11 б) приведены в табл. 5.15.
Таблица 5.14
Варианты оценки обобщенных функциональных подсистем и альтернатив Анализ результатов (см. табл. 5.14) позволяет сделать следующие выводы.

В тех случаях, когда равнопредпочтительны одновременно подсистемы и альтернативы (вариант 1) или только альтернативы (вариант 3), все синтезируемые комбинаторным методом целостные системы будут также равнопредпочтительны. Интегральные значения критерия качества эффективность системы для любой целостной системы равны 0,333 как для варианта 1, так и для варианта 3.
Предварительные оценки альтернатив в вариантах 2 и 4 не одинаковы. Учет в иерархическом синтезе различной степени предпочтительности обобщенных функциональных подсистем относительно их вклада в эффективность целостной системы приводит к различным векторам приоритетов альтернатив относительно фокуса иерархии, а следовательно, к различным значениям критерия качества у синтезируемых композиций альтернатив.

Например, лучшей для варианта оценки 2 является композиция А11А21А31 (значение критерия 0,729), а лучшей для варианта оценки 4 является композиция А11А22А33 (значение критерия 0,713).
Для всего морфологического множества вариантов (27 вариантов), синтезированных на морфологической таблице (рис. 5.12), рассчитаны значения критерия качества эффективность системы с учетом вариантов 2 и 4 оценки альтернатив и обобщенных функциональных подсистем (см. табл.

5.15). Анализ приведенных графиков (см. рис. 5.12) показывает, что при установлении равного вклада со стороны обобщенных функциональных подсистем в эффективность целостной системы (кривая 1) можно выделить шесть вариантов систем с существенно более высоким значением этого критерия по сравнению с остальными. Множество этих систем состоит из следующих вариантов:
M1 = {1, 3, 4, 5, 6, 27}. Указанным вариантам соответствуют следующие комбинации альтернатив: (А11А21А32), (А11А22А31), (А11А23A31), (A12A21A31), (А13A21А31), (А11А21А31).

При установлении различного вклада со стороны обобщенных функциональных подсистем в эффективность целостной системы (кривая 2) выделяется девять вариантов конструкций с существенно более высоким значением рассматриваемого критерия по сравнению с остальными.

Множество этих систем состоит из следующих вариантов:
М2= {1,2, 3,4, 11, 12, 15, 16, 27}.
В заключение можно отметить, что интегральное качество синтезируемой целостной системы определяется, с одной стороны, относительным качеством обобщенных функциональных подсиcтем, а с другой относительным качеством альтернатив, их реализующих.
Синтез систем на основе качественных классификационных признаков
Синтез вариантов систем на морфологических таблицах можно осуществлять с использованием качественных классификационных признаков, характеризующих свойства альтернатив. Классификационные признаки несут обобщенную специфическую информацию о системах, отличающуюся от рассмотренной ранее информации, определяющей предпочтения по критериям качества.

Классификационные признаки могут Сыть использованы в задачах поиска в морфологических множествах вариантов, наиболее сходных по функциям и структуре с заданным известным прототипом или поисковым заданием, отражающим желаемые для исследователя свойства. В таких задачах исследователи и эксперты в большей степени оперируют не количественными данными, а понятиями, имеющими качественный характер.

Качественные признаки наиболее информативны и при решении задач синтеза оригинальных (экзотичных) вариантов систем, обладающих свойствами существенной новизны и конкурентоспособности.
Синтез вариантов, сходных с прототипом. Задачу поиска в морфологическом множестве вариантов систем, наиболее близких к прототипу или поисковому заданию, можно решать на основе мер сходства и различия. Целевая функция в этой задаче имеет следующий вид: найти подмножество S∈ Ω, для элементов которого

где С(Si1, S2) мера сходства между описанием синтезированного варианта системы Si1 и прототипом или поисковым решением S2.
Морфологический синтез на основе классификационных признаков с учетом целевой функции, в основе которой лежит мера сходства (5.14), осуществляется следующим образом.
Вначале формируется морфологическая таблица (табл. 5.16), в которой альтернативы Aij охарактеризованы множеством признаков fij.
Наличие у альтернативы того или иного признака из указанного множества отмечается в морфологической таблице единицей, а отсутствие нулем. Прототип, относительно которого вычисляется мера сходства, задается аналогичным образом. Предположим, что прототип синтезирован из альтернатив морфологической таблицы и состоит из композиции А11А21А31. После определения прототипа осуществляется генерация всех вариантов, содержащихся в рассматриваемой таблице. Поисковые образы сгенерированных вариантов сравниваются с образом прототипа (табл.

5.17).

Для каждой пары, состоящей из прототипа и поискового образа варианта, вычисляется мера сходства: C(Sll, S2) =0,87; C(Sl2, S2) = 0,84; C(Sl18, S2) = 0,7. Варианты упорядочиваются по степени близости к прототипу.

Подмножество наиболее близких к прототипу вариантов в конечном итоге предоставляется эксперту для более детального анализа.
Выявление в морфологических множествах наиболее оригинальных вариантов. Прогресс в социально-экономической и технологической сферах определяется внедрением новых эффективных систем.

Задача по выявлению и обоснованию новых вариантов систем достаточно трудоемка, так как требует сопоставления систем по большому числу классификационных признаков. Вариант системы, принадлежащей некоторому множеству вариантов, наиболее оригинален, если он в наименьшей степени включен по составу признаков во все оставшиеся варианты из рассматриваемого множества.

Формализация процедуры выявления в морфологическом множестве новых, наиболее оригинальных вариантов систем основана на использовании мер включения и сходства.
Поиск наиболее оригинального варианта в морфологическом множестве осуществляется но следующему алгоритму.
Этап 1. На основе морфологической таблицы генерируются все варианты, образующие морфологическое множество.
Этап 2. Для всего морфологического множества вариантов строится матрица включения или матрица сходства.
Этап 3. Вычисляется правый собственный вектор W матрицы, построенной на предыдущем этапе.
Этап 4. Отыскивается подмножество минимальных значений в векторе W, которому соответствуют наиболее оригинальные варианты. т.е. ищутся минимумы целевой функции:

Число искомых элементов вектора п задается исследователем.
Организация данных и процесс их обработки на ЭВМ.
Важнейшим требованием по реализации данного алгоритма выступает требование рациональной организации данных и процесса их обработки с учетом вычислительных ресурсов современных ЭВМ. В соответствии с этим все расчетные операции по синтезу оригинальных решений на морфологической таблице были подвергнуты углубленному анализу и некоторые формулы были существенно модифицированы.
Приведем описание процедуры расчета меры включения множества признаков i-го решения в множество признаков всех решений, содержащихся в морфологической таблице.
Если морфологическая таблица содержит NS строк и в каждой строке i размещается альтернатив, то число возможных решений . Для этого множества решений предполагается построить матрицу мер включения, размерность которой будет Ntr×Ntr.

После этого вычисляется значение меры включения i-го решения (Si) во все сгенерированные решения (S).
На уровне алгоритмической модели математического обеспечения построение матрицы мер включения не предусматривалось, так как размещение в памяти персональных ЭВМ информации о решениях, число которых превышает 1000, представляется невозможным. С учетом этого формулу вычисления меры включения можно представить следующим образом:

Этот подход к расчету меры включения решает проблему размещения необходимой информации о решениях в памяти ЭВМ. Однако существенным его недостатком является значительное число (Ntr×Ntr) выполняемых в рамках одного цикла операций.


В качестве средства решения этой проблемы может выступить следующий подход. Значение меры включения вычисляется для всего множества решений, описание которого по признакам образовано комбинацией описаний входящих в него альтернатив.

Таким образом, определенная величина, составляющая меру включения всего решения, может быть отнесена к каждой альтернативе. Это позволит избежать повторного ее расчета при построении целостной меры включения Si. Эти значения могут храниться во внешней памяти ЭВМ.

В случае добавления альтернативы к множеству альтернатив в строках морфологической таблицы будет произведен пересчет значений параметров включения только для альтернатив этой строки.
Аналогичные действия будут выполнены и в случае исключения альтернативы из 1-й строки. Представим произведенные над формулой математические преобразования:

где Npr общее число признаков, которыми описаны системы;
Ns число строк в морфологической таблице;
Npj число признаков в строке j;
xil и xij значения признака i соответственно для Sl и Sj;
xlji и xkjl значения признака i для альтернативы в строке j, соответствующей Sl и Sk;
Индекс k принимает значения из множества {Рk} номеров альтернатив строки у, входящих в решение Sk.
Смысл отраженных формулой (5.15) преобразований состоит в следующем. Множество сумм , а также может быть разбито, в свою очередь, на большее множество сумм, соответствующих операции не над целостными Si и Sj, а над составляющими его альтернативами.

Выражение отражает число общих признаков альтернативы в строке j, входящей в Sl со всеми альтернативами.
Для определения величин, характеризующих операции, выполняемые над описанием по признакам каждой альтернативы, при вычислении меры включения каждого Si в описание всех S требуется перейти от формулы, содержащей номера систем, к формулам, основанным на параметрах структуры морфологической таблицы.
Приведем описание формулы, предусматривающей расчеты меры включения W(Sl, S) на основе значения числа общих признаков Оij альтернативы Аij со всеми альтернативами i-й строки и числа признаков Zij альтернативы Aij .
В соответствии с логикой комбинаторного синтеза целостных технических решений множество S = {Sl} включает все альтернативы i-й строки морфологической таблицы, причем все множество альтернатив из строки i (Ail, ... , Аij, ..., ) может входить во все S qi раз, где

Соотношение (5.15) формально отражает следующий принцип: каждая альтернатива Аij i-й строки входит в Ntr/ решений, где число альтернатив в i-й строке.
Таким образом, каждой альтернативе Аij i-й строки можно поставить в соответствие функцию Оij = f (Аil,..., Аik,..., ), характеризующую число общих признаков описания этой альтернативы и описаний множества неповторяющихся альтернатив {Аij}, включающего собственно альтернативу Аij. Указанная функция определяется следующим образом:

где число альтернатив в i-й строке;
число признаков в i-й строке;
хikj и хikl значение признака k из множества признаков {xik}, описывающих альтернативы i-й строки.
Число признаков, которые включает описание альтернативы Аij, является уникальной ее характеристикой. Это число можно определить из соотношения, которое соответствует знаменателю формулы (5.15):

где число признаков, включаемых описанием альтернативы Ау ;
хikj значение признака k из множества признаков {хikj}, характеризующих альтернативы i-й строки.
Нормированное значение меры включения Si в множество S с учетом приведенных рассуждений может быть рассчитано в соответствии с формулой

где Ns число строк в морфологической таблице;
число альтернатив в i-й строке;
Ntr число S, которое может быть получено на морфологической матрице

рli элемент множества номеров альтернатив, образующих решение Si.
В результате модификации схемы расчета меры включения предоставляется возможность не производить повторный расчет характеристик Оij и Zij, от которых функционально зависит мера включения W(Si; S). Значения Оij и Zij хранятся во внешней памяти ЭВМ и рассматриваются как входные данные для алгоритмической модели процесса функционирования системы морфологического синтеза.
Морфологические методы синтеза рациональных вариантов систем
Отличительной особенностью морфологических методов древовидного, лабиринтного и блочно-лабиринтного синтеза рациональных вариантов систем является то, что в них оценка степени соответствия синтезированного варианта исходной цели синтеза осуществляется непосредственно в ходе процедуры построения искомого варианта, по мере наращивания функциональных подсистем.
Морфологический метод древовидного синтеза. Он относится к методам морфологического последовательного детерминированного поиска [1] и позволяет существенно уменьшить число операций выбора по сравнению с полным перебором вариантов, содержащихся в морфологической таблице. Общее число операций выбора в методе древовидного синтеза определяется по выражению

где Kl число альтернатив для реализации l-й обобщенной функциональной подсистемы или функции;
L число обобщенных функциональных подсистем (строк морфологической таблицы).

Метод морфологического древовидного синтеза включает несколько этапов.
Этап 1. Формулируется цель исследования и строится морфологическая таблица для рассматриваемой предметной области (рис. 5.13).

Обобщенные функциональные подсистемы, определяющие строки морфологической таблицы, ранжируются системой принятия решений по значимости.
Этап 2. В морфологической таблице выделяются две строки, соответствующие функциональным подсистемам с наивысшей значимостью (рис. 5.13б). Осуществляется синтез всех парных сочетаний альтернатив, содержащихся в двух выбранных строках таблицы. Для рассматриваемого примера число парных сочетаний альтернатив равно восьми. Полученные парные сочетания альтернатив анализируются исследователем с использованием системы принятия решений по множеству критериев качества.

По результатам многокритериального анализа отбирается наиболее рациональный вариант. Допустим, что лучшим является вариант (А11А42).
Этап 3. Из морфологической таблицы извлекается очередная по значимости обобщенная функциональная подсистема с альтернативами ее возможной реализации. Проводится комбинирование выделенных на данном этапе альтернатив с рациональным вариантом, полученным на предыдущем этапе. Полученное в результате синтеза множество тернарных комбинаций альтернатив вновь анализируется исследователем с использованием системы принятия решений в целях выявления наиболее рациональной комбинации.

Например, лучший вариант на данном этапе может состоять из следующих трех альтернатив (А11А42А32).
Этап 4. Синтез продолжается в соответствии с этапами 2 и 3 вплоть до исчерпания всех обобщенных функциональных подсистем и получения целостного варианта, включающего все подсистемы.
Морфологический метод лабиринтного синтеза. Данный метод базируется на древовидном методе и относится к классу методов с корректировкой [7].
Идея метода заключается в том, что в процессе поиска рационального решения на морфологической таблице на каждом этапе отбирается не одно, а п рациональных сочетаний альтернатив.
Наилучшее из этих сочетаний поступает на следующий этап, а п-1 вариантов резервируются.
Если на Р-м этапе проектировщику не удается получить удовлетворительное решение, комбинируя все альтернативы P-й обобщенной функциональной подсистемы с наилучшим вариантом, полученным на предыдущем, (Р-1)-м этапе, то организуется просмотр всех п-1 вариантов, зарезервированных на (Р-1)-м этапе со всеми альтернативами Арj, относящимися к Р-му этапу. Если в этом случае требуемый вариант не отыскивается, то осуществляется возврат на (P-2)-й этап и организуется последовательный просмотр всех зарезервированных на этом этапе вариантов со всеми альтернативами функциональной подсистемы Р-1 и отбор соответствующего наилучшего (Р-2)-го варианта.

Процедура поиска может продолжаться вплоть до первой и второй по значимости обобщенных функциональных подсистем.
Проиллюстрируем вариант реализации лабиринтного метода синтеза на примере. Предположим, что задана морфологическая таблица, состоящая из четырех строк (рис.

5.14), проранжированных по значимости.
На этапе 1 выполняется полный перебор альтернатив первых двух по значимости обобщенных функциональных подсистем. В результате получается шесть парных сочетаний альтернатив, среди которых для определенности отмечаются два наиболее рациональных варианта: (А11А22) и (A12A21). Второй по эффективности вариант (A12A21) отмечается в качестве резервного.

Проводится согласование наиболее рационального варианта с исходными требованиями на проектирование. При наличии такого соответствия процедура синтеза продолжается на этапе 2, в противном случае уточняются исходные требования и состав морфологической таблицы.
На этапах 2 и 3 синтез осуществляется по тем же правилам, что и на этапе 1. В конечном итоге при прохождении всех обобщенных функциональных подсистем в рассматриваемом примере остается два варианта системы: (А11А22А32А41) и (А11А22А32А42). Если хотя бы один из этих вариантов удовлетворяет исходной цели проектирования, то процедура синтеза заканчивается, в противном случае работа продолжается на этапе 4.

Этап 4 предполагает возврат на этап 2 и извлечение зарезервированного варианта, которым является вариант, состоящий из комбинации альтернатив (А11А22А31). Этот резервный вариант комбинируется с альтернативами, принадлежащими четвертой строке морфологической таблицы. В результате получаются два новых сочетания из четырех альтернатив, которые проверяются на предмет соответствия техническому заданию.

Если такое соответствие есть, то процедура синтеза заканчивается, в противном случае процесс синтеза продолжается. При исчерпании всех резервных вариантов, зафиксированных на втором этапе, работа по поиску решения задачи продолжается с извлечения очередного резервного варианта на первом этапе.

Далее процесс повторяется в соответствии с ранее представленным алгоритмом.
Лабиринтный метод синтеза по сравнению с древовидным позволяет повысить вероятность получения наиболее эффективного варианта системы, удовлетворяющего требованиям проектировщика. Это достигается за счет итерационной процедуры возврата к пространству меньшей размерности. При реализации лабиринтного метода на каждом этапе выбор наиболее эффективного и резервных вариантов проводится на основе многокритериального принятия решений методом анализа иерархии или методом, основанным на теории нечетких множеств. Компьютерная реализация лабиринтного метода обеспечивает запоминание всего многоитерационного маршрута прохождения по морфологической таблице.

Это позволяет проанализировать принятые ранее решения и выбрать окончательное, наиболее рациональное.
Морфологический метод блочно-лабиринтного синтеза. Этот метод предполагает конструирование систем на отдельных блоках морфологической таблицы, что позволяет свести решение задачи морфологического синтеза к задаче меньшей размерности [8,9].
Процесс синтеза рационального варианта осуществляется сверху вниз, т. е. от более обобщенных функциональных подсистем к более конкретным реализациям этих подсистем.
Существуют две модификации метода блочно-лабиринтного синтеза.
Рассмотрим первую модификацию. Метод состоит из ряда этапов, на каждом из которых осуществляются процедуры структурирования информации, оценки вариантов и принятия решений.
Этап 1. Выбирается объект исследования, формируется исходная цель синтеза системы и составляется список требований, которым должна удовлетворять искомая система. Требования ранжируются по значимости.
Этап 2. Осуществляется построение скелетной морфологической таблицы, состоящей из основных (главных) функциональных подсистем рассматриваемой системы и основных вариантов, реализующих выделенные функциональные подсистемы. К основным функциональным подсистемам относятся такие, которые определяют сущность системы в целом и отличают ее от других систем.
Этап 3. Проводится синтез рациональных вариантов на скелетной морфологической таблице. Для выполнения этой процедуры используется метод лабиринтного синтеза.
В результате получается так называемая минимальная исследуемая функциональная система, включающая то минимальное количество функциональных подсистем, с помощью которых можно реализовать основную функцию системы в целом. Конечно же, такая функциональная система, как правило, не может удовлетворить всем требованиям задания и подвергается дальнейшему совершенствованию.
Этап 4. В синтезированном на этапе 3 рациональном варианте определяются слабые функциональные элементы, не удовлетворяющие в полной мере предъявляемым требованиям. Для улучшения основных слабых элементов строятся дополнительные морфологические таблицы.

Наименованиями строк этих таблиц являются наименования вспомогательных функциональных подсистем. Эти подсистемы получены в результате декомпозиции слабых элементов.
Этап 5. С помощью метода лабиринтного синтеза осуществляется поиск рациональных вариантов на дополнительных морфологических таблицах.
Процедура выявления слабых элементов может быть распространена и на рациональные варианты, полученные на дополнительных матрицах.
Этап 6. Проводится компоновка вновь синтезированных на дополнительных морфологических таблицах функциональных подсистем в целостную систему.
В заключение принимается решение о соответствии синтезированного решения исходным требованиям. Если такое соответствие есть, то задача считается решенной, в противном случае проделываются следующие процедуры:
- расширяется число отбираемых (резервируемых) вариантов на промежуточных этапах метода при поиске рациональных вариантов на морфологических таблицах;



Содержание раздела