d9e5a92d

Укрощение проволоки


К последним, по-видимому, следует отнести идею авторофного человека. Исходя из данных таблицы 3, можно предположить, серьезные работы в этом направлении начнутся не ранее середины следующего века, т.е. на границе фаз снижения и депрессии пятой волны. Таким образом, макроциклы Кондратьева характеризуют темпы развития науки и техники, скорость их "созревания" для решения той или иной проблемы, считая от появления идеи I этапа.

Это подтверждается и противоположными примерами - "забытыми", "ненужными" открытиями и изобретениями.
Так, первые открытия законов генетики (Мендель) и радиоактивности (де Сен-Виктор) пришлись на середину фазы процветания второй волны, а их повторное открытие - на фазу восстановления третьей волны.
Первое открытие голографии (Вольфке) состоялось в фазе процветания третьей волны, а в фазе восстановления четвертой волны практически теми же средствами ее переоткрыл Габор! То же самое произошло с попытками создания пригодного для практики вертолета и реактивного самолета.
Вывод прост: "забвение", неприятие открытий и изобретений есть не только результат опережения уровня науки и техники, оно связано с многочисленными экономическими интересами общества. В фазах процветания общество в первую очередь заинтересовано в закреплении ранее достигнутых успехов!
Интересно, что возникновение ТРИЗ (Г.С.Альтшуллер, 1946) пришлось на фазу восстановления четвертой волны, но ее интенсивное развитие началось лишь с фазы снижения, а в фазе депрессии развитие приобрело лавинообразный характер. Возникновение принципиально новой компьютерной технологии (систем искусственного интеллекта на базе ТРИЗ) также пришлось на границу фаз снижения и депрессии (конец 80-х - начало 90-х годов).
Выдающееся открытие Н.Д.Кондратьева позволяет приблизительно установить предпочтительные временные (хронологические) интервалы для системы творческих Целей, рассмотренной в этой книге.
Так, в фазах снижения, депрессии и, частично, восстановления возникают наиболее благоприятные условия для работы над Целями I, III этапов и II этапа (работа над новыми научными направлениями). В конце фазы депрессии и в фазе восстановления можно приступать к работам над Целями IV этапа (практическая реализация новых технических систем). Фазы восстановления и процветания наиболее предпочтительны для работы над Целями II этапа (развитие уже существующих научных направлений), III и IV этапов (работа над усовершенствованием существующих видов техники).
* * *
Можно сказать, что читателям этой книги необычайно повезло, так как начало их творческой деятельности придется на период наиболее дерзновенных исканий на всех этапах творчества!

Алмазные этюды: укрощение проволоки


Существует распространенное (и ошибочное!) мнение, что главное в творчестве - отыскать верную идею, а ее детальная проработка и воплощение - дело второстепенное.
По этому поводу среди инженеров бытует ехидная поговорка: "машина должна работать не в принципе, а в корпусе!" В основе ее лежит богатый жизненный опыт творцов науки и техники: "оживить" идею - обосновать, сделать доступной, воплотить в жизнь - в десятки и сотни раз сложнее, чем найти.
Кто после длительных экспериментов не убеждался в полной никчемности, казалось бы, правильной, красивой идеи, кто не натыкался на неожиданные препятствия на, казалось бы, ясном и прямом пути, тот не поймет, какой огромный труд стоит за новой формулой или работающей машиной, какой пестрый букет чувств - от окрыляющей радости до глубочайшего разочарования - время от времени обуревает исследователя или изобретателя.
Лучшее средство понять и принять это - попытаться самому придумать какое-либо новшество и воплотить его в жизнь.
* * *
Первые симптомы грядущих трудностей возникли, когда "эвриканцам" вместо трех ожидаемых пришлось решать целый ворох проблем. Но вот основные технические решения найдены. Казалось, остается немного поработать руками...
И тут гора новых забот свалилась на наши головы. Надо было рассчитать основные параметры и узлы будущей установки, делать рабочие эскизы, разместить заказы на изготовление наиболее ответственных деталей, ломать голову над высоковольтным источником питания, разыскивать проволоку, чистый графит, сверхчистое олово, высоковольтные конденсаторы и многое другое. В поисках подходящих материалов и деталей приходилось обращаться к знакомым, многократно перерывать домашний хлам, а то и отправляться на... свалку. Так, для изготовления токовводов в "жертву" были принесены запасные жала паяльника.



Появился весьма оригинальный источник высокого напряжения - мощное авиационное магнето.
Особенно много крови испортила всем проволока для камеры.
Очень долго ее не удавалось раздобыть. Наконец, ребята приволокли бухту хорошей стальной проволоки, но... другого диаметра. Пришлось изменять конструкцию камеры и заново рассчитывать на прочность.

В окончательном варианте камера должна была выдерживать давление в 12000 атмосфер - для начала и это неплохо.
Восторги поутихли, когда стали думать, как и где наматывать проволоку на камеру (общая длина около километра!). Задача А-20:
Проволока должна наматываться виток к витку, с постоянным натяжением: от качества намотки во многом зависит будущая прочность камеры. При намотке на станке приходится вручную направлять упругую проволоку, регулировать натяжение, постоянно следить, чтобы витки не перехлестывались друг через друга. Необходимо предложить простой и надежный способ намотки, исключающий эти недостатки.

Как быть?
Эта задача была сформулирована уже после сокрушительного поражения, которое мы потерпели, недооценив всей силы коварства стальной проволоки...
Весной, когда занятия в школах заканчивались, все было готово к операции "намотка". Ребята договорились насчет токарного станка в ближайших школьных мастерских, и мы отправились в путь, самонадеянно рассчитывая закончить к вечеру.
Первый слой проволоки лег идеально. Но со второго начались перехлесты витков. Приходилось останавливать станок. Стараясь не ослабить натяжение проволоки, неправильные витки осторожно отматывали назад. Это не всегда удавалось.

И тогда с ехидным шипением распускались один-два готовых слоя. Работа шла со скоростью один виток вперед, два витка назад.
На этом злоключения не заканчивались. Мы своевременно не удосужились перемотать проволоку из бесформенной бухты на катушку. Из-за этого процесс намотки выглядел довольно странно. Два человека, распутывая проволоку, отходили с тяжеленной бухтой на 10-15 метров. По их команде включался станок, и они, лавируя между станками, постепенно приближались к нам.

Еще два человека следили, чтобы растянувшаяся на весь зал проволока не цеплялась за станки. Завершилось это тем, что проволока была безнадежно запутана. Все в машинном масле, мы понуро побрели домой.
Летом "Эврика" в полном составе выехала на берег Обского моря в традиционную летнюю школу. Там, среди шумящих сосен, нарушители дисциплины искупали свои грехи, распутывая огромный клубок драгоценной для нас проволоки. Тогда же мы серьезно подготовились к новой попытке укрощения проволоки, сформулировав и решив задачу А-20 о намотке.
На 44 показана идея решения. Наматываемую проволоку надо прижимать бруском из мягкой сосны с ровной поверхностью. Такой прижим исключит "выскакивание" витка из своего ряда и возникновение перехлеста. Витки первого слоя оставят на поверхности бруска отпечаток в виде резьбовых канавок, которые и будут в дальнейшем направлять проволоку, обеспечивая плотную укладку витка к витку.

С помощью груза, подвешиваемого к свободному концу бруска, можно обеспечить постоянное, независимо от диаметра намотки, натяжение проволоки.
Когда осенью испытывался этот способ намотки, было даже немного странно видеть, как проволока САМА, без хитроумных механизмов бегает вправо-влево по поверхности быстро вращающейся камеры, покрывая ее ровными рядами витков!
Подобных трудностей хватало с избытком. Например, когда завершалось изготовление установки, нас подстерег поистине сокрушительный удар. Кто-то раздобыл книгу японского ученого Н.Маэно "Наука о льде". И тут-то выяснилось, что при расчете давления, развиваемого при замерзании воды, мы не учли многочисленные фазовые переходы льда.

При температуре -20°С и давлении свыше 2000 атмосфер структура льда изменяется, и его плотность переваливает за 1 г/см3. Практически это означало, что с помощью льда, вместо ожидаемого давления в 6800 атмосфер, можно получить максимум 2000.
И хотя для испытаний модели установки это было не так уж важно, стало досадно за такой промах: мы же знали о существовании различных модификаций льда и не удосужились раньше выяснить их свойства. 1 Вернадский В.И. Научная мысль как планетное явление. - М.: Наука, 1991. - С.51.



Содержание раздела