Адаптивные методы -Книги - Анализ сигналов 4


Анализ сигналов



Ряды Фурье и их приложения В математической физике. - Касперова Н.С
Основной областью занятий Фурье была математическая физика. В 1807 и 1811 он представил Парижской Академии Наук свои первые открытия по теории распространении тепла в твёрдом теле, а в 1822 опубликовал известную работу «Аналитическая теория теплоты», сыгравшую большую роль в последующей истории математики. Это – математическая теория теплопроводности. В силу общности метода эта книга стала источником всех современных методов математической физики. В этой работе Фурье вывел дифференциальное уравнение теплопроводности и развил идеи, в самых общих чертах намеченные ранее Д. Бернулли, разработал для решения уравнения теплопроводности при тех или иных заданных граничных условиях метод разделения переменных (метод Фурье), который он применял к ряду частных случаев (куб, цилиндр и др.). В основе этого метода лежит представление функций тригонометрическими рядами Фурье.

Адаптивное параметрическое оценивание квадратно-корневыми информационными алгоритмами - Кудрявцев М.Ю
Задача идентификации формулируется следующим образом: по результатам наблюдений над входными и выходными переменными системы должна быть построена оптимальная в некотором смысле модель, т.е. формализованное представление этой системы. В зависимости от априорной информации об объекте управления различают задачи идентификации в узком и широком смысле. Задача идентификации в узком смысле состоит в оценивании параметров и состояния системы по результатам наблюдений над входными и выходными переменными, полученными в условиях функционирования объекта. При этом известна структура системы и задан класс моделей, к которому данный объект относится. Априорная информация об объекте достаточно велика.

Спектральный анализ и его приложения к обработке сигналов в реальном времени
Спектральный анализ - это один из методов обработки сигналов, который позволяет охарактеризовать частотный состав измеряемого сигнала. Преобразование Фурье является математической основой, которая связывает временной или пространственный сигнал (или же некоторую модель этого сигнала) с его представлением в частотной области. Методы статистики играют важную роль в спектральном анализе, поскольку сигналы, как правило, имеют шумовой или случайный характер. Если бы основные статистические характеристики сигнала были известны точно или же их можно было бы без ошибки определить на конечном интервале этого сигнала, то спектральный анализ представлял бы собой отрасль точной науки. Однако в действительности по одному-единственному отрезку сигнала можно получить только некоторую оценку его спектра.



- Начало - - Вперед -